Gas Chromatography & Atomic absorption spectroscopy Instrument Technician

Class: M.Sc. I Skill level: 9

Department of Chemistry

- 1. Title: Gas Chromatography & Atomic absorption spectroscopy Instrument Technician
- 2. Year of implementation: 2020

Structure of Skill Development Course

Skill level	Theory Hours	Practical Hours	Total Hours	Credits	No. of students in batch
9	20	30	50	03	30

Syllabus

Learning Objectives:

- 1. To give knowledge about gas chromatography and atomic absorption spectroscopy.
- 2. To make the students familiar about handling the instrument.
- To improve the understanding of students regarding application of instruments in analytics.

Theory Syllabus (20 Hrs)

Unit I – Gas Chromatography

(10)

Introduction, Principle, Instrumentation, practical demonstration on instruments, calibration and method development, spectroscopy instrumentation as well as data handling, analysis and reporting.

Unit II – Atomic absorption Spectroscopy

(10)

Introduction, Principle, Instrumentation, calibration and method development, spectroscopy instrumentation as well as data handling, analysis and reporting.

Practical Syllabus (30 Hrs)

List of Experiments:-----

24 hr

- 1. Effect of column temperature on separation of mixture, isomers in gas chromatography.
- 2. To investigate the effect of the gas flow rate on the retention time.
- To determine the optimum conditions for the separation of the mixtures e.g. (C₆-C₁₁)_nalkanes, alcohols etc.
- To determine the optimum conditions for the separation of the mixtures e.g. aldehydes, ketones
- 5. Demonstration on replacements of GC column, gas lines.
- 6. Analysis of lead in soil and water by atomic absorption spectrometry.
- 7. Determination of calcium concentration in various samples
- 8. Determination of Mg, Na, and Fe concentration by AAS spectroscopy.

Project/ Field Visits/ Industrial Visit-----06 hr

Learning Outcomes:

- The student knows identification, quantification and purification of the individual component in the mixtures.
- 2. The student knows fundamental concepts & theories of separation techniques in GC.
- 3. The student knows the strength & limitations of instruments.

Recommended Books:

- 1. Alka L.gupta, analytical chemistry
- Skoog, D. A. Holler F.J. and Nieman, T.A.Principle of instrumental analysis, cengage learning india Ed.
- Willard, H.H., Merritt, L.L., Dean, J.&Settoe, F.A. Instrumental Methods of analysis.
 7th Ed. Wadsworth Pblishing Co.Ltd.Belmont, California, USA, 1988.
- 4. H.M. McNair and E. J. Bonelli. "Basic Gas chromatography" Varian
- 5. Instruments, Palo Alto'CA., March1969, pp.91-92.

BOS Sub Committee:

Expert committee:

- 1. Mr. P. V. Bhise
- 1. Dr. S. P. Pawar, Asst. Prof, RSCS, Kolhapur
- Miss. V.V. Pawar
- 2. Mr. Ajit Ekal, Manager, Insta vision

laboratories & services, Satara